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A remarkable number of physiologically active alka- 
loids are found in the skin secretions of neotropical frogs 
belonging to the family Dendr0batidae.l One major class 
of dendrobatid alkaloids is the 2,ti-disubstituted cis- 
decahydroquinolines, e.g., pumiliotoxin C (1). Recently, 
trans-decahydroquinoline alkaloids, e.g., 2,Bdiallyl-trans- 
decahydroquinoline (2, trans-219A) and 2-allyld-(pent- 
2-en-4-ynyl)-trans-decahydroquinoline (3, trans-243A), 
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were isolated from Dendrobates histrionicus and the 
absolute configurations determined by X-ray crystal- 
lographic analysis.2 Although considerable studies on the 
preparation of cis-decahydroquinoline alkaloids have 
appeared,la only one synthesis of a related trans-alkaloid, 
(+)-perhydro-219A (41, has been r e p ~ r t e d . ~  We recently 
developed a short, asymmetric route to the cis-deca- 
hydroquinoline alkaloid, (-)-pumiliotoxin C, from an 
enantiopure N-acyldihydropyridone in t em~ed ia t e .~~  A 
complimentary strategy that also allows N-acyldihydro- 
pyridones to be utilized as building blocks for the 
synthesis of certain trans-decahydroquinolines has been 
under study in our laboratories. In this paper we report 
the first asymmetric synthesis of a naturally occurring 
trans-decahydroquinoline alkaloid of the Dendrobatidae 
family, (+)-trans-219A (2). 

The strategy we used to prepare the cis-alkaloid 
pumiliotoxin C involved a conjugate addition reaction of 
a bicyclic enone and a stereoselective protonation of the 
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resulting enolate to set the cis stereochemistry a t  C-4a 
and C-8a.3 To arrive at the trans fused ring system of 
trans-219A, a plan was followed that included forming 
the bicyclic ring system through an intramolecular aldol 
condensation, stereospecific conjugate addition at  C-5, 
and introduction of the required stereochemistry at  C-4a 
through hydrogenation of an olefin bond. 

Reaction of homochiral 1-acylpyridinium salt 6, pre- 
pared in situ from 4-methoxy-3-(triisopropylsilyl)pyri- 
dine5 and the chloroformate of (+)-trans-2-( a-cumy1)- 
cyclohexanol (TCC),6 with [5-(l-pentenyl)lmagnesium 
bromide in THF/toluene at -78 "C gave the crude 
N-acyldihydropyridone 6 in 95% yield and 93% de 
(Scheme 1). 

Purification by radial PLC (silica gel, EtOAchexanes) 
afforded an 81% yield of pure diastereomer 6 [mp 90- 
91.5 "C; [aIz6~ +81.7" (c 0.235, CDCld1. Treatment of 6 
with NaOMeNeOH followed by aqueous 10% HC1 pro- 
vided dihydropyridone 7 [[alz4~ -373" (c 2.77, CHCl3)I 
in 94% yield via a one-pot reaction, and the chiral 
auxiliary, (+)-TCC, was recovered in 95% yield. Reacy- 
lation of 7 with n-butyllithium and phenyl chloroformate 
gave a 93% yield of enantiopure carbamate 8.3b In the 
presence of boron trifluoride etherate, copper-mediated 
conjugate addition of [3-(benzyloxy)propyllmagnesium 
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bromide7 to 8 provided the cis-piperidone 9 in 79% yield.8 
Oxidative cleavage of the terminal alkene gave the 
aldehyde 10 (88% yield), which on treatment with p -  
toluenesulfonic acid in benzene afforded enone 11 [[alZ3~ 
+133" (c 0.305, CHC13)I in 92% yield. The stereocenter 
a t  C-5 was introduced stereoselectively by conjugate 
addition of the higher order cuprateg 121° to 11 followed 
by trapping with N-(5-chloro-2-pyridy1)triflimide1' to give 
vinyl triflate 13 in 82% yield. The vinyl triflate was 
converted to alkene 14 in 86% yield using Cacchi's 
procedure12 (Scheme 2). 

The phenyl carbamate of 14 was hydrolyzed with 
aqueous potassium hydroxide in 2-propanol under reflux 
for 6 days to afford an 87% yield of amine 15. The 
reduction of 15 was anticipated to be stereoselective, for 
the side chain at C-5 is axial and blocks the bottom face 
of the olefin bond. Hydrogenation of 15 over 5% platinum 
on carbon and palladium hydroxide gave a mixture of the 
crude amino diols 16, which was converted to carbamates 
17 by triacylation and subsequent hydrolysis with potas- 
sium carbonate in methanol. The diol mixture was 
treated with tributylphosphine and o-nitrophenyl sele- 
nocyanate to give bisselenides 18 in 91% yield.13 The 
ratio of diastereomers 18a and 18b was determined by 
lH NMR to be 87/13 in favor of the trans isomer 18a. 
Oxidative elimination13-14 of pure 18a (79%) using aque- 
ous hydrogen peroxide in THF provided a 92% yield of 
19 after chromatography. The synthesis was completed 
by cleaving the N4benzyloxycarbonyl) group. Treatment 
of 19 with sodiudammonia gave alkaloid trans-219A (2) 
in 95% yield as a colorless oil [[a124D +16.7" (c 0.305, 
MeOH) (lit.2 [a124~ +9.7" (c 2.0, MeOH))]. All IR, MS, 
and NMR spectral data for our synthetic 2 were in 
agreement with the reported values.2 A saniple of 
synthetic 2 had identical MS and FTIR spectra and GC 
retention time as the natural material (see Acknowledg- 
ment). 

The first asymmetric synthesis of alkaloid trans-219A 
has been accomplished in 14 steps and in 15% overall 
yield from readily available 4-methoxy-3-(triisopropyl- 
silyllpyridine. The basic strategy should be amenable to 
the enantioselective preparation of other alkaloids con- 
taining the trans-decahydroquinoline ring system, and 
efforts in this direction are underway in our laboratories. 
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